Estudio y representación de funciones

1. Halla, cuando existan, las asíntotas horizontales, verticales y oblicuas las siguientes funciones:

a)
$$f(x) = \frac{x - 1}{x - 2}$$

b)
$$f(x) = \frac{(x - 2)^2}{x - 1}$$

Calcula, si existen, los puntos en los que las asíntotas cortan la gráfica de la función.

- 2. Considera la función $f(x) = \begin{cases} x^2 2 & \text{si } x < 1 \\ \frac{1 2x}{x} & \text{si } x \ge 1 \end{cases}$
 - a) ¿Cuál es su dominio?
 - b) ¿Es continua en x = 1?
 - c) ¿Es derivable en x = 1?
 - d) ¿Cuáles son sus intervalos de crecimiento y decrecimiento?
 - e) ¿Cuáles son sus extremos?
 - f) ¿Tiene asíntotas?
 - g) Dibuja su gráfica.
- 3. Una empresa lanza al mercado una película de vídeo. Calcula invertir en publicidad una cantidad que, en euros, viene dada por la función $f(x) = 64x + \frac{25}{x}$, donde x representa, en miles de unidades, el número de cintas que hay en el mercado.
 - a) ¿Qué número de cintas de vídeo corresponde a la mínima inversión publicitaria? ¿A cuánto asciende esta inversión?
 - b) ¿Cuál es la tendencia del gasto publicitario según aumenta el número de películas en el mercado?
- **4.** Representa la función $f(x) = 3x^5 5x^3$.
- 5. Representa la función $f(x) = \frac{x}{x^2 2x + 1}$.
- **6.** Representa la función $f(x) = \sqrt{x^2 + 1}$.

SOLUCIONES

 $\mathbf{1}$. a) $x - 2 = 0 \Leftrightarrow x = 2$

x = 2 es la única asíntota vertical.

 $\lim_{x \to 0} f(x) = 1 \Rightarrow y = 1$ es asíntota horizontal.

La función no puede tener asíntotas oblicuas, pues tiene una asíntota horizontal.

Ninguna asíntota corta la gráfica de la función.

b) $x - 1 = 0 \Leftrightarrow x = 1$

x = 1 es la única asíntota vertical.

La función no tiene asíntotas horizontales.

Como
$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = 1$$
, $\lim_{x \to \pm \infty} (f(x) - x) = -3$, la

recta y = x - 3 es una asíntota oblicua.

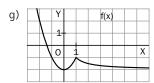
Ninguna asíntota corta la gráfica de la función.

- **2.** a) $D(f) = \mathbb{R}$
 - b) Sí, pues $\lim_{x \to 0} f(x) = \lim_{x \to 0} f(x) = f(1) = -1$
 - c) No, pues $f'(1)^- = 2 \neq f'(1)^+ = -1$

d)
$$f'(x) = \begin{cases} 2x & \text{si } x < 1 \\ \frac{-1}{x^2} & \text{si } x > 1 \end{cases}$$

f es creciente en (0, 1); es decreciente en $(-\infty, 0)$ y en $(1, +\infty)$.

- e) El punto (0, -2) es un mínimo.
- $\lim_{x \to 0} f(x) = -2 \Rightarrow y = -2$ es asíntota horizontal.



3. a) $f'(x) = 64 - \frac{25}{x^2}$ siendo x > 0

$$f'(x) = 0 \iff x^2 = \frac{25}{64} \iff x = \frac{5}{8}$$

$$f''(x) = \frac{50}{x^3}$$
; por tanto, $f''(\frac{5}{8}) > 0$

f tiene un mínimo en $\left(\frac{5}{8}, f\left(\frac{5}{8}\right)\right) = (0,6; 80);$ así,

si la empresa lanza 600 películas al mercado, la inversión publicitaria es mínima y asciende a 80 euros.

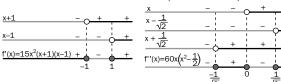
b) Como f tiene una asíntota oblicua en y = 64x, la empresa tiende a gastar 0,064 euros por película.

4. $D(f) = \mathbb{R}$

$$f'(x) = 15x^4 - 15x^2$$
, $f''(x) = 60x^3 - 30x$

$$f'(x) = 0 \iff x = 0, x = 1, x = -1$$

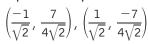
$$f''(x) = 0 \iff x = 0, x = \frac{1}{\sqrt{2}}, x = -\frac{1}{\sqrt{2}}$$

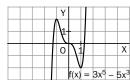


Creciente en $(-\infty, -1)$ y $(1, +\infty)$; decreciente en el intervalo (-1, 1). Máximo: (-1, 2). Mínimo: (1, 2).

Cóncava en $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$ y $\left(0, \frac{1}{\sqrt{2}}\right)$; convexa en

 $\left(\frac{-1}{\sqrt{2}}, 0\right)$ y $\left(\frac{1}{\sqrt{2}}, +\infty\right)$. Puntos de inflexión: (0, 0),

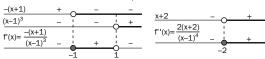


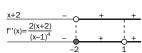


5. $D(f) = \mathbb{R} - \{1\}$; x = 1 asíntota vertical.

$$f'(x) = \frac{-(x+1)}{(x-1)^3}$$
; $f''(x) = \frac{2(x+2)}{(x-1)^4}$

 $f'(x) = 0 \iff x = -1$; $f''(x) = 0 \iff x = -2$



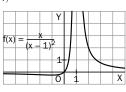


Decreciente en $(-\infty, -1)$ y $(1, +\infty)$; creciente en (-1, 1). Mínimo en $\left(-1, -\frac{1}{4}\right)$.

Cóncava en $(-\infty, -2)$; convexa en (-2, 1) y $(1, +\infty)$.

Punto de inflexión $\left(-2, -\frac{2}{9}\right)$.

Asíntota horizontal: y = 0.



6. $D(f) = \mathbb{R}$

$$f'(x) = \frac{x}{\sqrt{x^2 + 1}}; \ f''(x) = \frac{1}{(x^2 + 1)\sqrt{x^2 + 1}} > 0$$

 $f'(x) = 0 \iff x = 0$

Decreciente en $(-\infty, 0)$

y creciente en $(0, +\infty)$.

Mínimo en (0, 1).

Siempre convexa.

y = x e y = -x asíntotasoblicuas.

